TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 SOLUTION SKETCHES TO HOMEWORK 6

MATHIAS BRAUN AND WENHAO ZHAO

Homework 6.1 (Holomorphic interpolation*). Let $(a_n)_{n \in \mathbb{N}}$ be sequence without an accumulation point and let $(b_n)_{n \in \mathbb{N}}$ be an arbitrary sequence (both in \mathbb{C}). Show there exists a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ such that $f(a_n) = b_n$ for every $n \in \mathbb{N}^1$.

Homework 6.2 (Representation of meromorphic functions as quotients). Let $h: \mathbb{C} \to \mathbb{C}$ be a meromorphic function, i.e. its singularities are isolated and only poles of finite order. Show that there exist two entire functions $f, g: \mathbb{C} \to \mathbb{C}$ with no common zeros with h = f/g.

Solution. Without loss of generality we may and will assume h does not vanish identically. Let us denote by P(h) the set of poles of h. Then P(h) and Z(h) are disjoint discrete sets. Due to the Weierstraß product theorem we find an entire function $g \colon \mathbb{C} \to \mathbb{C}$ such that Z(g) = P(h) and $o_z(g)$ is equal to the order of the pole of h in $z \in P(h)$. Then g does not vanish identically. Setting f = gh it follows f can be extended to an entire function since it is bounded near each point $z \in P(g)$. By construction we have $Z(f) \cap Z(g) = \emptyset$.

Homework 6.3 (Weierstraß product theorem on open sets). Let $U \subset \mathbb{C}$ be an open set and let $(a_n)_{n \in \mathbb{N}}$ be a discrete sequence in U. Set $o_n := \#\{k \in \mathbb{N} : a_k = a_n\}$ and assume $o_n < \infty$ for every $n \in \mathbb{N}$. We claim there exists a holomorphic function $f : U \to \mathbb{C}$ such that $Z(f) = \{a_n : n \in \mathbb{N}\}$ and $o_{a_n}(f) = o_n$ for all $n \in \mathbb{N}$. Moreover, as we shall see in the proof the function f can be taken as an infinite product. The argument splits into two steps. Similarly to the Mittag-Leffler theorem we recenter part of the Weierstraß factors and replace $E_n(z/a_n)$ by $E_n((a_n - c_n)/(z - c_n))$ for a suitable sequence $(c_n)_{n \in \mathbb{N}}$. We denote by $S' \subset \mathbb{C}$ the set of accumulation points of the sequence $(a_n)_{n \in \mathbb{N}}$. If $S' = \emptyset$ there is nothing to prove as we can apply Theorem 4.2 from the lecture notes. Hence assume that $S' \neq \emptyset$.

a. Suppose there exists a sequence $(c_n)_{n \in \mathbb{N}}$ in S' such that $|a_n - c_n| \to 0$ as $n \to \infty$. Show the infinite product

$$f(z) := \prod_{n=1}^{\infty} E_n \left[\frac{a_n - c_n}{z - c_n} \right]$$

converges locally normally on U and obeys $Z(f) = \{a_n : n \in \mathbb{N}\}$ and $o_{a_n}(f) = o_n$ for every $n \in \mathbb{N}$.

b. Split the set $S := \{a_n : n \in \mathbb{N}\}$ as in Lemma 2.7 from the lecture notes and use Lemma 2.8 to conclude the proof by combining a. and Theorem 4.2.

Solution. a. Let $K \subset U$ be compact. Then there is $\varepsilon > 0$ such that $\operatorname{dist}(K, \partial U) \ge \varepsilon$. Since $c_n \in S' \subset \partial U$ we deduce there exists $n(K) \in \mathbb{N}$ such that for every $n \ge n(K)$,

$$K \subset \{z \in U : |z - c_n| \ge 2 |a_n - c_n|\}.$$

Indeed, this holds because $|z - c_n| \ge \varepsilon$ for every $z \in K$ yet $|a_n - c_n| \to 0$ as $n \to \infty$. Hence, for every $n \ge n(K)$ we habe $|a_n - c_n|/|z - c_n| \le 1/2$, so that Lemma 4.1 implies

$$\sum_{n\geq n(K)}\sup_{z\in K}\left|E_n\left[\frac{a_n-c_n}{z-c_n}\right]-1\right|\leq \sum_{n\geq n(K)}2^{-(n+1)}<\infty.$$

Date: November 4, 2024.

¹Hint. Combine the Weierstraß product theorem with the Mittag-Leffler theorem for a suitable sequence of principal parts.

Thus the infinite product f converges locally normally on U. Since each E_n has a simple zero in z=1 and $a_n \neq c_n$ for every $n \in \mathbb{N}$ (recall $a_n \in U$ and $c_n \notin U$) we deduce from Lemma 3.11 that $Z(f) = \{a_n : n \in \mathbb{N}\}$ and $o_{a_n}(f) = o_n$ for every $n \in \mathbb{N}$.

b) Splitting $S = S_1 \sqcup S_2$ as in Lemma 2.7 we obtain $S_1 = \{a_{n,1} : n \in \mathbb{N}\}$ is closed and therefore $S' = S'_2$. Due to Lemma 2.8, the set $S_2 = \{a_{n,2} : n \in \mathbb{N}\}$ is discrete and such that there exists a sequence $(c_n)_{n \in \mathbb{N}}$ in S'_2 such that $|c_n - a_{n,2}| \to 0$ as $n \to \infty$. Since S_1 is closed it is also discrete in \mathbb{C} and therefore we can apply Theorem 4.2 to obtain that the entire function $f_1 : \mathbb{C} \to \mathbb{C}$ defined by

$$f_1(z) = \prod_{n=1}^{\infty} E_n \left[\frac{z}{a_{n,1}} \right]$$

has its only zeros with the correct multiplicity in $\{a_{n,1} : n \in \mathbb{N}\}$ (here we also used $0 \notin S_1$). On S_2 we can apply a. to deduce the holomorphic function $f_2 : U \to \mathbb{C}$ given by

$$f_2(z) = \prod_{n=1}^{\infty} E_n \left[\frac{a_{n,2} - c_n}{z - c_n} \right]$$

has its only zeros with the correct multiplicity in $\{a_{n,2} : n \in \mathbb{N}\}$. Since S_1 and S_2 are disjoint the product $f = f_1 f_2$ satisfies the desired properties.

Homework 6.4 (First applications of Picard's little theorem). a. Show every meromorphic function f that omits three distinct values $a, b, c \in \mathbb{C}$ is constant.

- b. Give an example of a meromorphic function that omits the two values $0, 1 \in \mathbb{C}$.
- c. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function. Show $f \circ f$ has a fixed point unless f is affine but not linear, i.e. f(z) = z + b for some $b \in \mathbb{C} \setminus \{0\}^2$.

Solution. a. Assume f is nonconstant. The assignment $(f(z) - a)^{-1}$ can be extended to a nonconstant, entire function which omits the two different values $(b - a)^{-1}$ and $(c - a)^{-1}$. This contradicts Picard's little theorem.

- b. Consider the meromorphic assignment $f(z) := (1 + e^z)^{-1}$, which has first order poles in all points of the form $(2n + 1)\pi i$, where $n \in \mathbb{Z}$.
 - c. Suppose $f \circ f$ has no fixed points. Then the assignment

$$g(z) = \frac{f(f(z)) - z}{f(z) - z}$$

is entire and $g(z) \neq 0$ for every $z \in \mathbb{C}$.

Moreover, note $g(z) \neq 1$ for every $z \in \mathbb{C}$. Indeed, g(z) = 1 implies f(z) is a fixed point for f and therefore also for $f \circ f$. Hence by Picard's little theorem, $c := g(z) \in \mathbb{C} \setminus \{0, 1\}$. Differentiation yields

$$f'(z)[f'(f(z)) - c] = 1 - c.$$

Since $c \neq 1$ we know $f'(z) \neq 0$ and $f'(f(z)) \neq c$ for every $z \in \mathbb{C}$. Thus $f' \circ f$ is entire and omits the values 0 and $c \neq 0$. Picard's little theorem implies it is constant. Combining the open mapping theorem (for f) and the identity theorem (for f') it follows f' is constant. Hence f is of the form f(z) = az + b for every $z \in \mathbb{C}$. Since also f has no fixed point we conclude a = 1 and $b \neq 0$, as claimed.

$$g(z) := \frac{f(f(z)) - z}{f(z) - z}$$

Show it is constant and differentiate it. Then deduce $f' \circ f$ omits the value 0 and said constant. Finally, show this implies that f' is constant.

²**Hint.** Consider the assignment