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Homework 6.1 (Holomorphic interpolation®). Let (a,),eN be sequence without an accu-
mulation point and let (b,,),eN be an arbitrary sequence (both in C). Show there exists a
holomorphic function f: C — C such that f(a,) = b, for every n € N'.

Homework 6.2 (Representation of meromorphic functions as quotients). Let 2: C — C be
a meromorphic function, i.e. its singularities are isolated and only poles of finite order. Show
that there exist two entire functions f, g: C — C with no common zeros with 4 = f/g.

Solution. Without loss of generality we may and will assume /4 does not vanish identically.
Let us denote by P (%) the set of poles of 4. Then P(h) and Z(h) are disjoint discrete sets.
Due to the Weierstrall product theorem we find an entire function g: C — C such that
Z(g) = P(h) and 0,(g) is equal to the order of the pole of /2 in z € P(h). Then g does not
vanish identically. Setting f = g & it follows f can be extended to an entire function since it
is bounded near each point z € P(g). By construction we have Z(f) N Z(g) = 0.

Homework 6.3 (Weierstrall product theorem on open sets). Let U c C be an open set
and let (a,)neN be a discrete sequence in U. Set o, := #{k € N : a; = a,} and assume
0, < oo for every n € N. We claim there exists a holomorphic function f: U — C such
that Z(f) = {a, : n € N} and o,, (f) = 0, for all n € N. Moreover, as we shall see in
the proof the function f can be taken as an infinite product. The argument splits into two
steps. Similarly to the Mittag—Lefller theorem we recenter part of the Weierstral} factors and
replace E, (z/a,) by E,((a, — ¢,)/(z — ¢,)) for a suitable sequence (c,,),eN. We denote
by S’ c C the set of accumulation points of the sequence (a,)nen. If S” = 0 there is nothing
to prove as we can apply Theorem 4.2 from the lecture notes. Hence assume that " # 0.

a. Suppose there exists a sequence (¢, )neN in S’ such that |a,, — ¢,| = 0 as n — oo.
Show the infinite product

f() = ﬁE =

n

converges locally normally on U and obeys Z(f) = {a, : n € N} and 0,, (f) = 0,
for every n € N.

b. Split the set S := {a, : n € N} as in Lemma 2.7 from the lecture notes and use
Lemma 2.8 to conclude the proof by combining a. and Theorem 4.2.

Solution. a. Let K C U be compact. Then there is £ > 0 such that dist(K, dU) > &. Since
cn € 8’ € AU we deduce there exists n(K) € N such that for every n > n(K),

Kc{zeU:|z—cuyl 22|a, —cnl}-

Indeed, this holds because |z — ¢,| > € forevery z € K yet |a,, — c;,| = 0as n — oo. Hence,
for every n > n(K) we habe |a,, — c¢,,|/|z — cn| < 1/2, so that Lemma 4.1 implies

En[an_cn]—l‘s Z 7=(n+l) o
L= Cn n>n(K)

sup
n>n(K) €K
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'Hint. Combine the WeierstraB product theorem with the Mittag—Leffler theorem for a suitable sequence of
principal parts.



2 SOLUTION SKETCHES TO HOMEWORK 6

Thus the infinite product f converges locally normally on U. Since each E,, has a simple
zero in z = 1 and a, # ¢, for every n € N (recall a, € U and ¢, ¢ U) we deduce from
Lemma 3.11 that Z(f) = {a, : n € N} and o, (f) = 0, for every n € N.

b) Splitting S = §; LI S5 as in Lemma 2.7 we obtain S| = {a, 1 : n € N} is closed and
therefore §” = §7,. Due to Lemma 2.8, the set S> = {a, > : n € N} is discrete and such that
there exists a sequence (cp)nen in 85 such that [c, — a, 2| — 0asn — co. Since Sy is
closed it is also discrete in C and therefore we can apply Theorem 4.2 to obtain that the
entire function fj: C — C defined by

fi2) = ]E[En[azl
n=1 n,

has its only zeros with the correct multiplicity in {a,, : n € N} (here we also used 0 ¢ Sy).
On S, we can apply a. to deduce the holomorphic function f,: U — C given by

f(2) = ﬁE["Zz_—;]
n=1 n

has its only zeros with the correct multiplicity in {a, > : n € N}. Since S; and S, are disjoint
the product f = fi f> satisfies the desired properties.

Homework 6.4 (First applications of Picard’s little theorem). a. Show every mero-
morphic function f that omits three distinct values a, b, ¢ € C is constant.
b. Give an example of a meromorphic function that omits the two values 0, 1 € C.
c. Let f: C — C be an entire function. Show f o f has a fixed point unless f is affine
but not linear, i.e. f(z) = z + b for some b € C \ {0}°.

Solution. a. Assume f is nonconstant. The assignment ( f(z) — a)~! can be extended to a
nonconstant, entire function which omits the two different values (b — @)~ and (¢ — a) .
This contradicts Picard’s little theorem.

b. Consider the meromorphic assignment f(z) := (1 +e?)~!, which has first order poles
in all points of the form (2n + 1)7xi, where n € Z.

c. Suppose f o f has no fixed points. Then the assignment

(g = LU =2
f@) -z
is entire and g(z) # O for every z € C.
Moreover, note g(z) # 1 for every z € C. Indeed, g(z) = 1 implies f(z) is a fixed point
for f and therefore also for f o f. Hence by Picard’s little theorem, ¢ := g(z) € C\ {0, 1}.

Differentiation yields

IO (f@)—c]=1-c.
Since ¢ # 1 we know f’(z) # 0 and f'(f(z)) # ¢ for every z € C. Thus f’ o f is entire
and omits the values 0 and ¢ # 0. Picard’s little theorem implies it is constant. Combining
the open mapping theorem (for f) and the identity theorem (for f”) it follows f’ is constant.
Hence f is of the form f(z) = a z+ b for every z € C. Since also f has no fixed point we
conclude a = 1 and b # 0, as claimed.

“Hint. Consider the assignment
o) o LU~z
' fz) -z
Show it is constant and differentiate it. Then deduce f’ o f omits the value 0 and said constant. Finally, show this
implies that f” is constant.



