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Homework 6.1 (Holomorphic interpolation∗). Let (𝑎𝑛)𝑛∈N be sequence without an accu-
mulation point and let (𝑏𝑛)𝑛∈N be an arbitrary sequence (both in C). Show there exists a
holomorphic function 𝑓 : C → C such that 𝑓 (𝑎𝑛) = 𝑏𝑛 for every 𝑛 ∈ N1.
Homework 6.2 (Representation of meromorphic functions as quotients). Let ℎ : C → C be
a meromorphic function, i.e. its singularities are isolated and only poles of finite order. Show
that there exist two entire functions 𝑓 , 𝑔 : C → C with no common zeros with ℎ = 𝑓 /𝑔.
Solution. Without loss of generality we may and will assume ℎ does not vanish identically.
Let us denote by 𝑃(ℎ) the set of poles of ℎ. Then 𝑃(ℎ) and 𝑍 (ℎ) are disjoint discrete sets.
Due to the Weierstraß product theorem we find an entire function 𝑔 : C → C such that
𝑍 (𝑔) = 𝑃(ℎ) and 𝑜𝑧 (𝑔) is equal to the order of the pole of ℎ in 𝑧 ∈ 𝑃(ℎ). Then 𝑔 does not
vanish identically. Setting 𝑓 = 𝑔 ℎ it follows 𝑓 can be extended to an entire function since it
is bounded near each point 𝑧 ∈ 𝑃(𝑔). By construction we have 𝑍 ( 𝑓 ) ∩ 𝑍 (𝑔) = ∅.
Homework 6.3 (Weierstraß product theorem on open sets). Let 𝑈 ⊂ C be an open set
and let (𝑎𝑛)𝑛∈N be a discrete sequence in 𝑈. Set 𝑜𝑛 := #{𝑘 ∈ N : 𝑎𝑘 = 𝑎𝑛} and assume
𝑜𝑛 < ∞ for every 𝑛 ∈ N. We claim there exists a holomorphic function 𝑓 : 𝑈 → C such
that 𝑍 ( 𝑓 ) = {𝑎𝑛 : 𝑛 ∈ N} and 𝑜𝑎𝑛 ( 𝑓 ) = 𝑜𝑛 for all 𝑛 ∈ N. Moreover, as we shall see in
the proof the function 𝑓 can be taken as an infinite product. The argument splits into two
steps. Similarly to the Mittag–Leffler theorem we recenter part of the Weierstraß factors and
replace 𝐸𝑛 (𝑧/𝑎𝑛) by 𝐸𝑛 ((𝑎𝑛 − 𝑐𝑛)/(𝑧 − 𝑐𝑛)) for a suitable sequence (𝑐𝑛)𝑛∈N. We denote
by 𝑆′ ⊂ C the set of accumulation points of the sequence (𝑎𝑛)𝑛∈N. If 𝑆′ = ∅ there is nothing
to prove as we can apply Theorem 4.2 from the lecture notes. Hence assume that 𝑆′ ≠ ∅.

a. Suppose there exists a sequence (𝑐𝑛)𝑛∈N in 𝑆′ such that |𝑎𝑛 − 𝑐𝑛 | → 0 as 𝑛→ ∞.
Show the infinite product

𝑓 (𝑧) :=
∞∏
𝑛=1

𝐸𝑛

[ 𝑎𝑛 − 𝑐𝑛
𝑧 − 𝑐𝑛

]
converges locally normally on𝑈 and obeys 𝑍 ( 𝑓 ) = {𝑎𝑛 : 𝑛 ∈ N} and 𝑜𝑎𝑛 ( 𝑓 ) = 𝑜𝑛
for every 𝑛 ∈ N.

b. Split the set 𝑆 := {𝑎𝑛 : 𝑛 ∈ N} as in Lemma 2.7 from the lecture notes and use
Lemma 2.8 to conclude the proof by combining a. and Theorem 4.2.

Solution. a. Let 𝐾 ⊂ 𝑈 be compact. Then there is 𝜀 > 0 such that dist(𝐾, 𝜕𝑈) ≥ 𝜀. Since
𝑐𝑛 ∈ 𝑆′ ⊂ 𝜕𝑈 we deduce there exists 𝑛(𝐾) ∈ N such that for every 𝑛 ≥ 𝑛(𝐾),

𝐾 ⊂ {𝑧 ∈ 𝑈 : |𝑧 − 𝑐𝑛 | ≥ 2 |𝑎𝑛 − 𝑐𝑛 |}.
Indeed, this holds because |𝑧− 𝑐𝑛 | ≥ 𝜀 for every 𝑧 ∈ 𝐾 yet |𝑎𝑛 − 𝑐𝑛 | → 0 as 𝑛→ ∞. Hence,
for every 𝑛 ≥ 𝑛(𝐾) we habe |𝑎𝑛 − 𝑐𝑛 |/|𝑧 − 𝑐𝑛 | ≤ 1/2, so that Lemma 4.1 implies∑︁

𝑛≥𝑛(𝐾 )
sup
𝑧∈𝐾

���𝐸𝑛 [ 𝑎𝑛 − 𝑐𝑛
𝑧 − 𝑐𝑛

]
− 1

��� ≤ ∑︁
𝑛≥𝑛(𝐾 )

2−(𝑛+1) < ∞.
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1Hint. Combine the Weierstraß product theorem with the Mittag–Leffler theorem for a suitable sequence of

principal parts.
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Thus the infinite product 𝑓 converges locally normally on𝑈. Since each 𝐸𝑛 has a simple
zero in 𝑧 = 1 and 𝑎𝑛 ≠ 𝑐𝑛 for every 𝑛 ∈ N (recall 𝑎𝑛 ∈ 𝑈 and 𝑐𝑛 ∉ 𝑈) we deduce from
Lemma 3.11 that 𝑍 ( 𝑓 ) = {𝑎𝑛 : 𝑛 ∈ N} and 𝑜𝑎𝑛 ( 𝑓 ) = 𝑜𝑛 for every 𝑛 ∈ N.

b) Splitting 𝑆 = 𝑆1 ⊔ 𝑆2 as in Lemma 2.7 we obtain 𝑆1 = {𝑎𝑛,1 : 𝑛 ∈ N} is closed and
therefore 𝑆′ = 𝑆′2. Due to Lemma 2.8, the set 𝑆2 = {𝑎𝑛,2 : 𝑛 ∈ N} is discrete and such that
there exists a sequence (𝑐𝑛)𝑛∈N in 𝑆′2 such that |𝑐𝑛 − 𝑎𝑛,2 | → 0 as 𝑛 → ∞. Since 𝑆1 is
closed it is also discrete in C and therefore we can apply Theorem 4.2 to obtain that the
entire function 𝑓1 : C → C defined by

𝑓1 (𝑧) =
∞∏
𝑛=1

𝐸𝑛

[ 𝑧

𝑎𝑛,1

]
has its only zeros with the correct multiplicity in {𝑎𝑛,1 : 𝑛 ∈ N} (here we also used 0 ∉ 𝑆1).

On 𝑆2 we can apply a. to deduce the holomorphic function 𝑓2 : 𝑈 → C given by

𝑓2 (𝑧) =
∞∏
𝑛=1

𝐸𝑛

[ 𝑎𝑛,2 − 𝑐𝑛
𝑧 − 𝑐𝑛

]
has its only zeros with the correct multiplicity in {𝑎𝑛,2 : 𝑛 ∈ N}. Since 𝑆1 and 𝑆2 are disjoint
the product 𝑓 = 𝑓1 𝑓2 satisfies the desired properties.

Homework 6.4 (First applications of Picard’s little theorem). a. Show every mero-
morphic function 𝑓 that omits three distinct values 𝑎, 𝑏, 𝑐 ∈ C is constant.

b. Give an example of a meromorphic function that omits the two values 0, 1 ∈ C.
c. Let 𝑓 : C → C be an entire function. Show 𝑓 ◦ 𝑓 has a fixed point unless 𝑓 is affine

but not linear, i.e. 𝑓 (𝑧) = 𝑧 + 𝑏 for some 𝑏 ∈ C \ {0}2.

Solution. a. Assume 𝑓 is nonconstant. The assignment ( 𝑓 (𝑧) − 𝑎)−1 can be extended to a
nonconstant, entire function which omits the two different values (𝑏 − 𝑎)−1 and (𝑐 − 𝑎)−1.
This contradicts Picard’s little theorem.

b. Consider the meromorphic assignment 𝑓 (𝑧) := (1 + e𝑧)−1, which has first order poles
in all points of the form (2𝑛 + 1)𝜋i, where 𝑛 ∈ Z.

c. Suppose 𝑓 ◦ 𝑓 has no fixed points. Then the assignment

𝑔(𝑧) = 𝑓 ( 𝑓 (𝑧)) − 𝑧
𝑓 (𝑧) − 𝑧

is entire and 𝑔(𝑧) ≠ 0 for every 𝑧 ∈ C.
Moreover, note 𝑔(𝑧) ≠ 1 for every 𝑧 ∈ C. Indeed, 𝑔(𝑧) = 1 implies 𝑓 (𝑧) is a fixed point

for 𝑓 and therefore also for 𝑓 ◦ 𝑓 . Hence by Picard’s little theorem, 𝑐 := 𝑔(𝑧) ∈ C \ {0, 1}.
Differentiation yields

𝑓 ′ (𝑧)
[
𝑓 ′ ( 𝑓 (𝑧)) − 𝑐

]
= 1 − 𝑐.

Since 𝑐 ≠ 1 we know 𝑓 ′ (𝑧) ≠ 0 and 𝑓 ′ ( 𝑓 (𝑧)) ≠ 𝑐 for every 𝑧 ∈ C. Thus 𝑓 ′ ◦ 𝑓 is entire
and omits the values 0 and 𝑐 ≠ 0. Picard’s little theorem implies it is constant. Combining
the open mapping theorem (for 𝑓 ) and the identity theorem (for 𝑓 ′) it follows 𝑓 ′ is constant.
Hence 𝑓 is of the form 𝑓 (𝑧) = 𝑎 𝑧 + 𝑏 for every 𝑧 ∈ C. Since also 𝑓 has no fixed point we
conclude 𝑎 = 1 and 𝑏 ≠ 0, as claimed.

2Hint. Consider the assignment

𝑔 (𝑧) :=
𝑓 ( 𝑓 (𝑧) ) − 𝑧
𝑓 (𝑧) − 𝑧

Show it is constant and differentiate it. Then deduce 𝑓 ′ ◦ 𝑓 omits the value 0 and said constant. Finally, show this
implies that 𝑓 ′ is constant.


